文章詳情
ARTICLE DETAILS

2024年中南林業(yè)科技大學(xué)非全日制研究生招生考試《高等數(shù)學(xué)》考試大綱

  一、考試內(nèi)容

  (一)函數(shù)、極限、連續(xù)

  函數(shù)的概念及表示法;函數(shù)的有界性、單調(diào)性、周期性和奇偶性;復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù);基本初等函數(shù)的性質(zhì)及其圖形;初等函數(shù);函數(shù)關(guān)系的建立。

  數(shù)列極限與函數(shù)極限的定義及其性質(zhì);函數(shù)的左極限與右極限 無窮小和無窮大的概念及其關(guān)系;無窮小的性質(zhì)及無窮小的比較;極限的四則運(yùn)算;極限存在的兩個(gè)準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則;兩個(gè)重要極限:

  函數(shù)連續(xù)的概念;函數(shù)間斷點(diǎn)的類型;初等函數(shù)的連續(xù)性;閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性、最大值和最小值定理、介值定理。

  (二)一元函數(shù)微分學(xué)

  導(dǎo)數(shù)和微分的概念;導(dǎo)數(shù)的幾何意義和物理意義;函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系;平面曲線的切線和法線;導(dǎo)數(shù)和微分的四則運(yùn)算;基本初等函數(shù)的導(dǎo)數(shù);復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法;高階導(dǎo)數(shù);一階微分形式的不變性;微分中值定理:羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理;洛必達(dá)法則;函數(shù)單調(diào)性的判別;函數(shù)的極值;函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線;函數(shù)圖形的描繪;函數(shù)的最大值與最小值。

  (三)一元函數(shù)積分學(xué)

  原函數(shù)和不定積分的概念;不定積分的基本性質(zhì)和基本積分公式;定積分的概念和基本性質(zhì);定積分中值定理;積分上限的函數(shù)及其導(dǎo)數(shù);牛頓-萊布尼茨公式;不定積分和定積分的換元積分法與分部積分法;有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分; 反常(廣義)積分;定積分在幾何上的應(yīng)用。

  (四)多元函數(shù)微積分學(xué)

  多元函數(shù)的概念;二元函數(shù)的幾何意義;二元函數(shù)的極限與連續(xù)的概念;有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì);多元函數(shù)的偏導(dǎo)數(shù)和全微分;多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法;二階偏導(dǎo)數(shù);多元函數(shù)的極值和條件極值、最大值和最小值;二重積分的概念、基本性質(zhì)和計(jì)算。

  (五)常微分方程

  常微分方程的基本概念;變量可分離的微分方程;齊次微分方程;一階線性微分方程;可降階的高階微分方程;線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理;二階常系數(shù)齊次線性微分方程;高于二階的某些常系數(shù)齊次線性微分方程;簡單的二階常系數(shù)非齊次線性微分方程。

  二、參考書目

  不指定參考書目,考試范圍以本考試大綱為準(zhǔn)。

報(bào)名申請
請?zhí)峁┮韵滦畔ⅲ猩蠋煏?huì)盡快與您聯(lián)系。符合報(bào)考條件者為您提供正式的報(bào)名表,我們承諾對您的個(gè)人信息嚴(yán)格保密。
姓名*
最高學(xué)歷/學(xué)位*
提 交
恭喜你,報(bào)名成功

您填的信息已提交,老師會(huì)在24小時(shí)之內(nèi)與您聯(lián)系

如果還有其他疑問請撥打以下電話

40004-98986
0/300
精彩留言